Molecular architecture of the Spire-actin nucleus
and its implication for actin filament assembly

Tomasz Sitara,1,2, Julia Gallingerb,1, Anna M. Duckaa, Teemu P. Ikonenc,
Michael Wohlhoeftd, Kurt M. Schmollerd, Andreas R. Bauschd,
Peteranne Joele, Kathleen M. Trybuse, Angelika A. Noegelf, Michael
Schleicherb, Robert Hubera,g,h,i & Tad A. Holaka,2

aMax Planck Institute of Biochemistry, 82152 Martinsried, Germany. bInstitute for
Anatomy and Cell Biology, Ludwig-Maximilians University, Schillerstrasse 42, 80336
Munich, Germany. cPaul Scherrer Institute, 5232 Villigen, Switzerland. dMolecular
and Cellular Biophysics, Technical University of Munich, James-Franck-Strasse 1,
85748 Garching, Germany. eDepartment of Molecular Physiology and Biophysics,
University of Vermont, 149 Beaumont Avenue, Burlington VT 05405, USA. iInstitute
for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-
Strasse 52, 50931 Cologne, Germany. gDepartment of Chemistry, Technical
University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany. hSchool of
Biosciences, Cardiff University, Cardiff CF10 3US, Wales, UK. iCenter for Medical
Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany. 1These
authors contributed equally to the work. 2Correspondence should be addressed to
T.A.H. (holak@biochem.mpg.de) or T.S. (sitar@biochem.mpg.de).
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering (SAXS), X-ray crystallography, total internal reflection fluorescence (TIRF) microscopy, and actin polymerization assays. We show that Spire/actin complexes in solution assume a unique, longitudinal-like shape, in which Spire WH2 repeats, in an extended configuration, line-up actins along the long axis of the core of the Spire-actin particle. In the complex, the KIND domain is positioned at the side of the first N-terminal Spire/actin module. In addition, we find that pre-formed, isolated Spire/actin complexes are very efficient nucleators of polymerization and afterwards dissociate from the growing filament. However, under certain conditions, all Spire constructs - even a single WH2 repeat - sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem.